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From the theory of waves of finite amplitude it is known that, with an 

increase in amplitude the wave becomes steeper and for a certain value 

of the amplitude a,, a break appears at its crest. The angle of the tan- 

gent at this point, as shown by Stokes, always equals 12@‘. For larger 

values of a the wave disintegrates. 

It may be expected that the limiting wave will also appear in the 

field of a vortex located below and close to, the surface of a heavy 

fluid. As has been shown by Moiseev [ 1 ] for the range of Froude numbers 

just above unity there are in any case two possible solutions for this 

problem. The existence of the solution which describes the particular 

flow which degenerates into a plane-parallel flow as the intensity of the 

vortex approaches zero, was proven by Ter-Krikorov [ 2 1. In [3 1 the 

existence of a second solution was established which under identical con- 

ditions produces a solitary wave. 

In the present paper we shall consider the flow pattern created 

jointly by the vortex and the fluid flow past it. The free surface of 

the latter has a singularity at the crest of the wave of the type of a 

finite solitary wave. It approaches the latter as the intensity of the 

vortex approaches zero. 

We shall investigate the motion of a vortex of intensity r under the 

surface of a heavy fluid of depth H. We shall assume that the vortex 
moves with a velocity c such that the dimensionless velocity or the 

Froude number, F2= c’/gH > 1. We assume the motion to be steady and to 

have a potential velocity W(Z) = (b (x, y) + i$ (x, y). 

Let us consider dimensionless variables in the physical (2) Plane 
(Fig. l,a) of the flow; the problem of the motion of the vortex, situated 
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at the point I = ia, will be reduced to the determination in the region 

D of the analytical function D(Z) which has a logarithmic singularity at 

the point z = ia and the right singularity at the wave crest and which 

satisfies the boundary and the asymptotic conditions. 

1 t_ VY (x) = const, yz- 
F2 (1) 

$=I on W), $=O on (S) (2) 

lim Y (z) = 1, Cm-$= 1 for z-00 (3) 

Let us map the region D in the z plane into a strip of unit width D’ 

in the plane 6 (Fig. 1, b) by the use of the function [(z) = 4(x, y) + 

iq(x, Y), which is analytic in D’ except at the wave crest. The point 

z = ia corresponds to the point 5 = is, the streamlines L and S in the z 

plane transform into the streamlines L’ and S’ in the plane c. 

Fig. 1. 

The intensity of the vortex does not change as a result of the conformal 

transformation. The complex potential in the plane 5 has the form 

also 

Imw (5) = 1 for q = 1, Im w (5) = 0 for q=O 

The conditions Cl), (2) and (3) will assume the form 

$12 (5) ( 2 \1 + vy (E, 1) = const 

“f sin np 1 
f(~)=l--coshn~+cosnp ’ const = 7j + y 

lim Y (5, ‘I) = 1, limz = 1, for 151-m, Y (E, 0) = 0 

(4) 

(5) 

In order that f(c) > 0. it is necessary to fulfil the condition 

y < 2 cot (l/z $1 
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In order to reduce the problem to a nonlinear integral equation let 

us map the region D’ in the [ plane into the inside of the unit circle 

in the t plane (Fig. 1,~) by the use of the function 

We assume 

4 dz = qe-ie = ,--io(3, 0 (5) = 0 (E, rl) + i7 (E, 11) 

Then 

dz = +- y’;;(” ) dt, dz = - ds e itl on L 
t +t 

(6) 

i-m 

Jf ds ~1 
a’5 

__ = -sin 8 ds 8 n q cos ‘iz 5 ) 
a=l-Im 

s 
,@(<)dj 

iQ 

where e iu = t on the circumference L” in the t plane. 

Taking into account (6), we differentiate (5) along the streamline in 

the z plane, that is along s; we obtain 

dq3 3y sin 0 (5) set l/z 5 3 5 fg’ IE (@I 
_- 

-x- n f2 [Es (a)1 + ; 43 (5) set 2 I [E (o), (7) 

Integrating (‘7) along u, we obtain 

0 

q9 (5) = $- 
s 

sin 8 (0) set l/2 5 3O Q fg’ [E (5)l 

f” [E (5)l 
d5 + ; qs (5) secT f IE (5)l d5 

s 
(8) 

0 0 

where 

T sin np 
f IE (c)j = i - 3 tal* (I/* c) +coez (Q np)’ 

W sin nptm It2 Q set ‘I2 5 

fc’ [E (5)l =- -r((d(l/, 5) + cos2 (1/2 @))2 

Since q(o) = 1 for CJ = n, then from (8) we have 

Using Mitchell’s method for the solution of the problem of finite 

waves, it is easy to see that w(t) in the region of a singular point has 

the form [ 4 1 

w (t) = 00 0) + q. (t) 

where 
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oo(t)+l(i-~)-+ or (1) = 5 a,tn 
n=o 

(W 

also the function ar( t) is holomorphic inside the circle and continuous 
on its boundary. Since we shall investigate a symmetrical wave, it is 

easy to see that the coefficients an are purely imaginary, that is 

(I 
n = ic,. 

From (10) it is seen that 

03, (6) = - g c,sinn5 + i zl c, CO? nz 
n=o n=o 

Then (8) will assume the form 

where tr is the function given by (9). Also it follows from (111 for a=0 
that 

Y = +fz 15 01 exp (3 i cn) 
ol=o 

The limiting value of the amplitude at which a finite wave appears is 
a0 = l/2 v. 

The value P of the lifting force is given by 

Equation (11) was solved numerically. The first twelve coefficients 
c, were determined by the method of iteration at specified points. The 
problem was computed on the machine *Strelan. In Figures 2 and 3 are 
shown the curves of Y and c as 
2 there exists a unique val:e v. 

functions of y and @. As seen from Figure 
(or c,) for each value of y and @ at 

which there appears a finite wave, and for v < v. (or c > c,) disintegra- 
tion of the wave takes place. 
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For constant values of u and p the curves of Figure 2 yield a finite 

value y, for which a finite wave appears. In Figure 3 are given the 

values of the lift coefficient C for the critical values y, @, v (or c). 

Analysis of the solution shows z t at a finite symmetrical wave is possible 

only for y < 0 and for small positive values y. 

-4 -2 

Fig. 2. Fig. 3. 

Note. We observe the fact that in the case of parallel flow past a 

vortex which transforms into a plane-parallel flow for y, (or r)+ 0, a 

finite Stokes wave does not exist for the following reason: 

Since the stream for y (or r)+ 0 transforms into a plane-parallel flow, 

the function 6 = [ (z, y), which maps the physical plane of the flow upon 
a strip of unit width, will as&me the form 

c (z, Y) = z -!- & (Z! Y) (k > O), 

where y is a real quantity. We have 

; (2, 6) # 6 

Since in the case of Stokes’ wave ( d[/dx( *= 0 at the wave 

(13) yields 

(13) 

crest, 

1 + 2ykqlo cos 81, + y2” QlO2 = 0, QlO = Ql (O,l), ho = 61 P,i) 

or 

yk = - qlo cos ()I0 + iqlo sin 81, 
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that is,a Stokes wave may exist only for complex values of y (or r). 
which is in contradiction with the condition that y is a real quantity. 

In conclusion I should like to express my gratitude to N.N. Moiseev for 
directing this work and to S.A. Solov’eva for help in the calculation of 
the results on the machine “Strela”. 
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